#include "Utilities.hpp" #include #include #include using namespace godot; using namespace OpenVic; Ref OpenVic::load_godot_image(String const& path) { if (path.begins_with("res://")) { ResourceLoader* loader = ResourceLoader::get_singleton(); return loader ? loader->load(path) : nullptr; } else { return Image::load_from_file(path); } } // Get the polar coordinates of a pixel relative to the center static Vector2 getPolar(Vector2 UVin, Vector2 center) { Vector2 relcoord = (UVin - center); float dist = relcoord.length(); float theta = std::numbers::pi / 2 + atan2(relcoord.y, relcoord.x); if (theta < 0.0f) theta += std::numbers::pi * 2; return { dist, theta }; } // From thebookofshaders, returns a gradient falloff static inline float parabola(float base, float x, float k) { return powf(base * x * (1.0 - x), k); } static inline float parabola_shadow(float base, float x) { return base * x * x; } static Color pie_chart_fragment(Vector2 UV, float radius, Array const& stopAngles, Array const& colours, Vector2 shadow_displacement, float shadow_tightness, float shadow_radius, float shadow_thickness, Color trim_colour, float trim_size, float gradient_falloff, float gradient_base, bool donut, bool donut_inner_trim, float donut_inner_radius) { Vector2 coords = getPolar(UV, { 0.5, 0.5 }); float dist = coords.x; float theta = coords.y; Vector2 shadow_polar = getPolar(UV, shadow_displacement); float shadow_peak = radius + (radius - donut_inner_radius) / 2.0; float shadow_gradient = shadow_thickness + parabola_shadow(shadow_tightness * -10.0, shadow_polar.x + shadow_peak - shadow_radius); // Inner hole of the donut => make it transparent if (donut && dist <= donut_inner_radius) { return { 0.1, 0.1, 0.1, shadow_gradient }; } // Inner trim else if (donut && donut_inner_trim && dist <= donut_inner_radius + trim_size) { return { trim_colour, 1.0 }; } // Interior else if (dist <= radius - trim_size) { Color col { 1.0f, 0.0f, 0.0f }; for (int i = 0; i < stopAngles.size(); i++) { if (theta <= float(stopAngles[i])) { col = colours[i]; break; } } float gradient = parabola(gradient_base, dist, gradient_falloff); return { col * (1.0 - gradient), 1.0 }; } // Outer trim else if (dist <= radius) { return { trim_colour, 1.0 }; } // Outside the circle else { return { 0.1, 0.1, 0.1, shadow_gradient }; } } void OpenVic::draw_pie_chart(Ref image, Array const& stopAngles, Array const& colours, float radius, Vector2 shadow_displacement, float shadow_tightness, float shadow_radius, float shadow_thickness, Color trim_colour, float trim_size, float gradient_falloff, float gradient_base, bool donut, bool donut_inner_trim, float donut_inner_radius) { ERR_FAIL_NULL_EDMSG(image, "Cannot draw pie chart to null image."); const int32_t width = image->get_width(); const int32_t height = image->get_height(); ERR_FAIL_COND_EDMSG(width <= 0 || height <= 0, "Cannot draw pie chart to empty image."); if (width != height) { UtilityFunctions::push_warning("Drawing pie chart to non-square image: ", width, "x", height); } const int32_t size = std::min(width, height); for (int32_t y = 0; y < size; ++y) { for (int32_t x = 0; x < size; ++x) { image->set_pixel(x, y, pie_chart_fragment( { static_cast(x) / static_cast(size), static_cast(y) / static_cast(size) }, radius, stopAngles, colours, shadow_displacement, shadow_tightness, shadow_radius, shadow_thickness, trim_colour, trim_size, gradient_falloff, gradient_base, donut, donut_inner_trim, donut_inner_radius)); } } }