1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
shader_type spatial;
render_mode cull_disabled;
#include "include/heightmap.gdshaderinc"
uniform sampler2D u_terrain_heightmap;
uniform sampler2D u_terrain_detailmap;
uniform sampler2D u_terrain_normalmap;
uniform sampler2D u_terrain_globalmap : source_color;
uniform mat4 u_terrain_inverse_transform;
uniform mat3 u_terrain_normal_basis;
uniform sampler2D u_albedo_alpha : source_color;
uniform float u_view_distance = 100.0;
uniform float u_globalmap_tint_bottom : hint_range(0.0, 1.0);
uniform float u_globalmap_tint_top : hint_range(0.0, 1.0);
uniform float u_bottom_ao : hint_range(0.0, 1.0);
uniform vec2 u_ambient_wind; // x: amplitude, y: time
uniform vec3 u_instance_scale = vec3(1.0, 1.0, 1.0);
uniform float u_roughness = 0.9;
varying vec3 v_normal;
varying vec2 v_map_uv;
float get_hash(vec2 c) {
return fract(sin(dot(c.xy, vec2(12.9898,78.233))) * 43758.5453);
}
vec3 unpack_normal(vec4 rgba) {
vec3 n = rgba.xzy * 2.0 - vec3(1.0);
n.z *= -1.0;
return n;
}
vec3 get_ambient_wind_displacement(vec2 uv, float hash) {
// TODO This is an initial basic implementation. It may be improved in the future, especially for strong wind.
float t = u_ambient_wind.y;
float amp = u_ambient_wind.x * (1.0 - uv.y);
// Main displacement
vec3 disp = amp * vec3(cos(t), 0, sin(t * 1.2));
// Fine displacement
float fine_disp_frequency = 2.0;
disp += 0.2 * amp * vec3(cos(t * (fine_disp_frequency + hash)), 0, sin(t * (fine_disp_frequency + hash) * 1.2));
return disp;
}
float get_height(sampler2D heightmap, vec2 uv) {
return sample_heightmap(heightmap, uv);
}
void vertex() {
vec4 obj_pos = MODEL_MATRIX * vec4(0, 1, 0, 1);
vec3 cell_coords = (u_terrain_inverse_transform * obj_pos).xyz;
// Must add a half-offset so that we sample the center of pixels,
// otherwise bilinear filtering of the textures will give us mixed results (#183)
cell_coords.xz += vec2(0.5);
vec2 map_uv = cell_coords.xz / vec2(textureSize(u_terrain_heightmap, 0));
v_map_uv = map_uv;
//float density = 0.5 + 0.5 * sin(4.0*TIME); // test
float density = texture(u_terrain_detailmap, map_uv).r;
float hash = get_hash(obj_pos.xz);
if (density > hash) {
vec3 normal = normalize(
u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, map_uv)));
// Snap model to the terrain
float height = get_height(u_terrain_heightmap, map_uv) / cell_coords.y;
VERTEX *= u_instance_scale;
VERTEX.y += height;
VERTEX += get_ambient_wind_displacement(UV, hash);
// Fade alpha with distance
vec3 wpos = (MODEL_MATRIX * vec4(VERTEX, 1)).xyz;
float dr = distance(wpos, CAMERA_POSITION_WORLD) / u_view_distance;
COLOR.a = clamp(1.0 - dr * dr * dr, 0.0, 1.0);
// When using billboards,
// the normal is the same as the terrain regardless of face orientation
v_normal = normal;
} else {
// Discard, output degenerate triangles
VERTEX = vec3(0, 0, 0);
}
}
void fragment() {
NORMAL = (VIEW_MATRIX * (MODEL_MATRIX * vec4(v_normal, 0.0))).xyz;
ALPHA_SCISSOR_THRESHOLD = 0.5;
ROUGHNESS = u_roughness;
vec4 col = texture(u_albedo_alpha, UV);
ALPHA = col.a * COLOR.a;// - clamp(1.4 - UV.y, 0.0, 1.0);//* 0.5 + 0.5*cos(2.0*TIME);
ALBEDO = COLOR.rgb * col.rgb;
// Blend with ground color
float nh = sqrt(max(1.0 - UV.y, 0.0));
ALBEDO = mix(ALBEDO, texture(u_terrain_globalmap, v_map_uv).rgb, mix(u_globalmap_tint_bottom, u_globalmap_tint_top, nh));
// Fake bottom AO
ALBEDO = ALBEDO * mix(1.0, 1.0 - u_bottom_ao, UV.y * UV.y);
}
|