aboutsummaryrefslogtreecommitdiff
path: root/game/addons/zylann.hterrain/tools/generator/shaders/perlin_noise.gdshader
blob: 7609f7c7a557514ae6f39cd116e2d9fa9d3f4b82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
shader_type canvas_item;
// Required only because we use all 4 channels to encode floats into RGBA8
render_mode blend_disabled;

#include "res://addons/zylann.hterrain/shaders/include/heightmap.gdshaderinc"

uniform vec2 u_offset;
uniform float u_scale = 0.02;
uniform float u_base_height = 0.0;
uniform float u_height_range = 100.0;
uniform int u_seed;
uniform int u_octaves = 5;
uniform float u_roughness = 0.5;
uniform float u_curve = 1.0;
uniform float u_terrain_size = 513.0;
uniform float u_tile_size = 513.0;
uniform sampler2D u_additive_heightmap;
uniform float u_additive_heightmap_factor = 0.0;
uniform vec2 u_uv_offset;
uniform vec2 u_uv_scale = vec2(1.0, 1.0);

uniform float u_island_weight = 0.0;
// 0: smooth transition, 1: sharp transition
uniform float u_island_sharpness = 0.0;
// 0: edge is min height (island), 1: edge is max height (canyon)
uniform float u_island_height_ratio = 0.0;
// 0: round, 1: square
uniform float u_island_shape = 0.0;

////////////////////////////////////////////////////////////////////////////////
// Perlin noise source:
// https://github.com/curly-brace/Godot-3.0-Noise-Shaders
//
// GLSL textureless classic 2D noise \"cnoise\",
// with an RSL-style periodic variant \"pnoise\".
// Author:  Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-08-22
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/stegu/webgl-noise
//

vec4 mod289(vec4 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
    return mod289(((x * 34.0) + 1.0) * x);
}

vec4 taylorInvSqrt(vec4 r) {
    return 1.79284291400159 - 0.85373472095314 * r;
}

vec2 fade(vec2 t) {
    return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
}

// Classic Perlin noise
float cnoise(vec2 P) {
    vec4 Pi = floor(vec4(P, P)) + vec4(0.0, 0.0, 1.0, 1.0);
    vec4 Pf = fract(vec4(P, P)) - vec4(0.0, 0.0, 1.0, 1.0);
    Pi = mod289(Pi); // To avoid truncation effects in permutation
    vec4 ix = Pi.xzxz;
    vec4 iy = Pi.yyww;
    vec4 fx = Pf.xzxz;
    vec4 fy = Pf.yyww;

    vec4 i = permute(permute(ix) + iy);

    vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
    vec4 gy = abs(gx) - 0.5 ;
    vec4 tx = floor(gx + 0.5);
    gx = gx - tx;

    vec2 g00 = vec2(gx.x,gy.x);
    vec2 g10 = vec2(gx.y,gy.y);
    vec2 g01 = vec2(gx.z,gy.z);
    vec2 g11 = vec2(gx.w,gy.w);
    
    vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
    g00 *= norm.x;
    g01 *= norm.y;
    g10 *= norm.z;
    g11 *= norm.w;
    
    float n00 = dot(g00, vec2(fx.x, fy.x));
    float n10 = dot(g10, vec2(fx.y, fy.y));
    float n01 = dot(g01, vec2(fx.z, fy.z));
    float n11 = dot(g11, vec2(fx.w, fy.w));
    
    vec2 fade_xy = fade(Pf.xy);
    vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
    float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
    return 2.3 * n_xy;
}
////////////////////////////////////////////////////////////////////////////////

float get_fractal_noise(vec2 uv) {
   float scale = 1.0;
   float sum = 0.0;
   float amp = 0.0;
   int octaves = u_octaves;
   float p = 1.0;
   uv.x += float(u_seed) * 61.0;
   
   for (int i = 0; i < octaves; ++i) {
      sum += p * cnoise(uv * scale);
      amp += p;
      scale *= 2.0;
      p *= u_roughness;
   }

   float gs = sum / amp;
   return gs;
}

// x is a ratio in 0..1
float get_island_curve(float x) {
   return smoothstep(min(0.999, u_island_sharpness), 1.0, x);
// float exponent = 1.0 + 10.0 * u_island_sharpness;
// return pow(abs(x), exponent);
}

float smooth_union(float a, float b, float k) {
   float h = clamp(0.5 + 0.5 * (b - a) / k, 0.0, 1.0);
   return mix(b, a, h) - k * h * (1.0 - h);
}

float squareish_distance(vec2 a, vec2 b, float r, float s) {
   vec2 v = b - a;
   // TODO This is brute force but this is the first attempt that gave me a "rounded square" distance,
   // where the "roundings" remained constant over distance (not the case with standard box SDF)
   float da = -smooth_union(v.x+s, v.y+s, r)+s;
   float db = -smooth_union(s-v.x, s-v.y, r)+s;
   float dc = -smooth_union(s-v.x, v.y+s, r)+s;
   float dd = -smooth_union(v.x+s, s-v.y, r)+s;
   return max(max(da, db), max(dc, dd));
}

// This is too sharp
//float squareish_distance(vec2 a, vec2 b) {
// vec2 v = b - a;
// // Manhattan distance would produce a "diamond-shaped distance".
// // This gives "square-shaped" distance.
// return max(abs(v.x), abs(v.y));
//}

float get_island_distance(vec2 pos, vec2 center, float terrain_size) {
   float rd = distance(pos, center);
   float sd = squareish_distance(pos, center, terrain_size * 0.1, terrain_size);
   return mix(rd, sd, u_island_shape);
}

// pos is in terrain space
float get_height(vec2 pos) {
   float h = 0.0;
   
   {
      // Noise (0..1)
      // Offset and scale for the noise itself
      vec2 uv_noise = (pos / u_terrain_size + u_offset) * u_scale;
      h = 0.5 + 0.5 * get_fractal_noise(uv_noise);
   }
   
   // Curve
   {
      h = pow(h, u_curve);
   }
   
   // Island
   {
      float terrain_size = u_terrain_size;
      vec2 island_center = vec2(0.5 * terrain_size);
      float island_height_ratio = 0.5 + 0.5 * u_island_height_ratio;
      float island_distance = get_island_distance(pos, island_center, terrain_size);
      float distance_ratio = clamp(island_distance / (0.5 * terrain_size), 0.0, 1.0);
      float island_ratio = u_island_weight * get_island_curve(distance_ratio);
      h = mix(h, island_height_ratio, island_ratio);
   }

   // Height remapping
   {
      h = u_base_height + h * u_height_range;
   }
   
   // Additive heightmap
   {
      vec2 uv = pos / u_terrain_size;
      float ah = sample_heightmap(u_additive_heightmap, uv);
      h += u_additive_heightmap_factor * ah;
   }
   
   return h;
}

void fragment() {
   // Handle screen padding: transform UV back into generation space.
   // This is in tile space actually...? it spans 1 unit across the viewport,
   // and starts from 0 when tile (0,0) is generated.
   // Maybe we could change this into world units instead?
   vec2 uv_tile = (SCREEN_UV + u_uv_offset) * u_uv_scale;

   float h = get_height(uv_tile * u_tile_size);
   
   COLOR = encode_height_to_viewport(h);
}